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Effect of signal contamination in matched-filter
detection of the signal on a cluttered background

James Theiler and Bernard R. Foy

Abstract— To derive a matched filter for detecting a weak
target signal in a hyperspectral image, an estimate of the band-to-
band covariance of the target-free background scene is required.
We investigate the effects of including some of the target signal in
the background scene. Although the covariance is contaminated
by the presence of target signal (there is increased variance in
the direction of the target signature), we find that the matched
filter is not necessarily affected. In fact, if the variation in plume
strength is strictly uncorrelated with the variation in background
spectra, the matched filter and its signal-to-clutter ratio (SCR)
performance will not be impaired. While there is little a priori
reason to expect significant correlation between the plume and
the background, there usually is some residual correlation, and
this correlation leads to a suppressing effect that limits the SCR
obtainable even for strong plumes.

These effects are described and quantified analytically, and
the crucial role of this correlation is illustrated with some
numerical examples using simulated plumes superimposed on
real hyperspectral imagery. In one example, we observe an order
of magnitude loss in SCR for a matched filter based on the
contaminated covariance.

Index Terms— Adaptive signal detection, Clutter, Covariance
matrices, Gases, Hyperspectral imagery, Matched filters

I. INTRODUCTION

DETECTING a weak signal on a cluttered background is
a problem that arises in a variety of contexts, but we

will consider in particular the detection of gaseous plumes in
hyperspectral imagery. In the weak plume limit, the effect of
the plume can be represented as a superposition of signal and
background ���������
	 (1)

where � is the observed radiance, � is the known plume
signature, and 	 is the unknown background clutter. Eq. (1)
corresponds to the radiance in a single pixel; here, � , � , and	 are � -dimensional vectors corresponding to the � channels
of the hyperspectral image, and � is a scalar proportional to
the plume strength. In the thermal infrared, � further depends
on the thermal contrast and ground emissivity, and it can be
positive or negative depending on whether the plume is in
emission or absorption. In shorter visible and near-infrared
(VNIR) wavelengths, the plume is only absorptive. We take� to be independent of wavelength, which turns out to be a
fair approximation in most cases [1]. For the exposition here,
we assume that Eq. (1) holds and that � is a scalar, though it
varies from pixel to pixel. Since the magnitude of the plume
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signature � can be incorporated into the plume strength � in
Eq. (1), we will impose the condition that

���������� (2)

A matched filter is a � -dimensional vector � that is applied
to a pixel vector � to produce a scalar � � � which emphasizes
the signal while suppressing the background clutter; that is,� � � is large, but � � 	 is small.

The adaptive matched filter [2] can be derived by optimizing
an estimated signal-to-clutter ratio. We first estimate the back-
ground statistics for the scene without the plume, computing
the average � 	������������! #"%$&('*)+	 & , and the covariance matrix

,.- ���/�0���1 $2
&3') �4	 &�5 � 	��/ 6�7	 &�5 � 	8�/ ��:9 (3)

where 	 & is off-plume background radiance in the ; th pixel, and� is the number of pixels in the scene. From this covariance
matrix, we can express the ability of the matched filter to
suppress the background in terms of the variance of the
matched filter image over the (plume-free) scene. That is:

Var � � �*	8 <� ���0�=�! $2
&('*):> � �:�7	 &?5 � 	��@ > A

� ���0�=�! $2
&('*) � �B�4	 &?5 � 	8�/ =�4	 &5 � 	��@ �� �

� � � ,.- � � (4)

We can express the performance of the matched filter in terms
of a signal-to-clutter ratio. The signal is the matched filter� applied to the plume ��� , and the clutter is given by the
variance over the background.

SCR � > � � �7���C > A� � ,.- � � � A > � � � > A� � ,.- � � � A � � �� � �� � ,.- � � (5)

The SCR is optimized by a matched filter given by

� -#D ,FE )- �:9 (6)

where ‘
D

’ indicates proportionality; the normalization of the
matched filter does not matter.1 The SCR for this matched
filter is given by plugging Eq. (6) into Eq. (5):

SCR � � A � � , E
)- �*� � , E )- �

� � , E )- � �G� A � � , E
)- �:� (7)

1Traditionally, there has been considerable concern about choosing the
normalization appropriately (for instance, to produce a fixed false alarm rate).
But the SCR is unaffected by the normalization.
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The expression in Eq. (6) can also be derived in terms
of the generalized likelihood ratio test (GLRT) [3], [4], and
for gaussian data can be shown to be optimal [5]. When the
background is nongaussian [6], [7], [8], then other approaches
may be called for. But for this paper, we will assume that
the background is gaussian and that its statistical error is
negligible. The general problem of weak signal detection in
hyperspectral imagery is reviewed in Refs. [9] and [10].

Gerlach [11] considered the effect of having one of the
samples 	 & contaminated by the target signal. In Gerlach’s
treatment, consideration was given to how this contaminant
affected the threshold for constant false alarm rate (CFAR)
detection. Our concern here is with how the effect can alter
the direction of the matched filter � .

In Eq. (6), we derived the classic matched filter result, when
the background is uncontaminated by plume. In Section II, we
include the plume in the estimate of the covariance, and show
that as long as the plume is uncorrelated with its background,
it will have no effect on the matched filter. In Section III,
we relax the assumption that plume and background are
uncorrelated; we introduce the vector � to characterize this
correlation, and show how � modifies the matched filter � .
In Section IV, we show the effect of this modified matched
filter on the signal-to-clutter ratio. Finally in Section V, we
illustrate these effects on real data (with simulated plumes).

II. EFFECT OF INCLUDING ON-PLUME PIXELS

In practice, we do not have access to the underlying scene,
but instead measure � which includes plume as well as
background. We compute the mean � � �1� ���0�=�! " $&('*) � & ,
and covariance matrix

, ���������! $2
&('*) �7� & 5 � � �/ =�7� & 5 � � �/ /��9 (8)

where � & � � & � � 	 & is the radiance in the ; th pixel. Note
that � � ��� � ��� �!� � 	�� , where � � � � ���0�=�! " $&('*)+� & , and the
expression for covariance is, � ���0�=�! " $&('*)�� �7� & 5 � ���@ A �*� � ��4� & 5 � � �@ � �7	 & 5 � 	��@ � ��4� & 5 � � �@ =�4	 & 5 � 	8�/ ��� ��4	 &?5 � 	8�/ =�4	 &5 � 	��@ ��� � (9)

Now, here comes an important assumption: the plume
strength is uncorrelated with the underlying background. More
specifically:

�/�0���1 $2
&3'*) �4� & 5 � ���/ =�4	 & 5 � 	��@ ������ (10)

From this, we have an expression for covariance in Eq. (9)
given by

, � ,.- �%�/�0�=�! $2
&3') �7� &?5 � ���/ A ����� (11)

We will write � A �����0�=�! $2
&('*) �7� &?5 � ���/ A (12)

as the variance of the plume concentration � over the scene.
This leads to , � , - � � A �*� � (13)

which shows how the covariance matrix is altered by having
the plume in the scene. The “corrupted” matched filter is given
by � D , E ) � (compare to Eq. (6)), which is equivalent to
saying

, � D � , or, - � � � A ��C� � D �B� (14)

Since � � � is a scalar, we have that the term � A �� � � �� A �7� � �  � is proportional to � , and so we have that
, - � D � ,

or � D , E )- � D � - . But since the normalization on the
matched filter is unimportant, this means that the matched filter
is unaffected by the presence of plume in the scene.

This is initially counter-intuitive: adding a plume adds signal
variation in the � direction and leads to a covariance matrix
that is “fatter” in that direction. Informally, the effect of the, E )

in Eq. (6) is to de-emphasize the directions where
,

is fatter (in particular, the eigendirections associated with the
largest eigenvalues). However, as the mathematics shows, this
does not apply to the specific direction � .

III. CORRELATION OF BACKGROUND AND PLUME

Although it is reasonable to expect the plume and the
underlying scene to be more or less uncorrelated, one should
not expect the expression in Eq. (10) to be strictly zero. In
practice, there should be some residual correlation, and we
will define

� �����0�=�! $2
&('*)
� � &?5 � ���� 	 �7	 & 5 � 	8�/ �9 (15)

where the denominator � is defined in Eq. (12) and is used here
for normalization with respect to plume strength. Although we
no longer neglect the correlation embodied in � , we do still
expect � to be small, since it corresponds to the extent to
which the statistics of “under-plume” pixels differ from the
statistics of “off-plume” pixels.

The expression for covariance in Eq. (9) is now given by, � , - � � � � � � � � � � � � A �*� � � (16)

The matched filter that will be obtained using this covari-
ance will satisfy

, � D � , so we can write:

� ,.- � � � � � � � � �C� � � A ��� � D �B� (17)

Now two of the terms, � � � � � and � A �*� � � , are proportional
to � , so ,.- � � � � �� � D �B� (18)

It can be verified by substitution that

� D , E )- � � 5 � � � , E )- �
�B� � � � , E )- � � 	 (19)

satisfies Eq. (18). The first term is proportional to ��
 , but when
there is correlation between background and plume strength
(embodied in a nonzero � ), the direction of the matched filter
is altered by the presence of plume in the scene.
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Fig. 1. Absorption spectrum of NO � over the AVIRIS wavelength range.

Since the normalization on � does not ultimately matter, we
will multiply by the scalar � � � � � , E )- � to obtain a form that
is strictly linear in � :

� � � - � � , E )-���� �C� , E )- ��� � 5 � �� , E )- � � ��� � (20)

IV. EFFECT OF MODIFIED MATCHED FILTER �
We introduce “whitened” [12] vectors	� � , E )�
 A- � 9 (21)	� � ,
E )�
 A- �:� (22)

to simplify the following scalar expressions:

�C� , E )- � � >
	� > A 9 (23)� � ,
E )- � � >
	� > A 9 (24)� � ,
E )- � � 	�� 	� � (25)

Then, we can rewrite Eq. (20) as

� � � - � � , E )�
 A- � � 	��� 	�  	� 5 > 	� > A 	��� � (26)

From this expression, we have for the signal strength

� � � � � � - ��� ��� , E )�
 A- � � 	��� 	�  	� 5 >
	� > A 	� ��� � , )�
 A- 	�

� � , E )- � � � � � � � � 	�� 	�  > 	� > A 5 >
	� > A � 	��� 	�  �� �C� , E )- ��� >

	� > A � (27)

For the clutter, we have (after some algebraic manipulation)

� � ,.- � � >
	� > A � � A > 	� > A � > 	� > A > 	� > A 5 > 	�� 	� > A � 9 (28)

and so the signal-to-clutter ratio is given by

SCR � � A > � � � > A� � , - � � � A >
	� > A�B� � A � > 	� > A > 	� > A 5 > 	��� 	� > A � � (29)

Recall that � is the plume strength at a given pixel, while� (defined in Eq. (12)) is a global measure of plume strength
across the whole image. The ratio ��� � is a dimensionless � �/�  
value that is independent of overall plume strength. In the
strong plume (large � ) limit, the SCR in Eq. (29) saturates at���������� SCR � �7�=� �  A

>
	� > A  � 5 >

	��� 	� > A
>
	� > A > 	� > A�! E

)
� (30)
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Fig. 2. The positive curves correspond to the spectra "$# of a dozen points
randomly selected from the scene. The negative curve is the plume absorption
signal %�& . The radiance in plotted as digital number (DN), and the % value
shown here corresponds to a plume concentration pathlength of 12.2 ppm-m
(parts per million - meters). This is the root mean square plume strength,
given by Eq. (12), for our simulated plume.

This is an upper bound on the SCR that will be obtained
for a given plume configuration. Note the crucial role of the
correlation � in this expression. In particular, as the magnitude
of the dimensionless >

	� > increases, the limiting signal-to-clutter
ratio drops. From the definitions in Eq. (15) and Eq. (21), we
can write a more compact expression:	� ���/�0�=�! $2

&3') �7� & � �  		 & (31)

where
		 & � , E )�
 A- �7	 &?5 � 	��@ is the whitened and mean-

subtracted background radiance.

V. NUMERICAL EXAMPLES

We illustrate the effect of including the target in the back-
ground with some numerical examples. So that the clutter
statistics are both spatially and spectrally realistic, we use real
hyperspectral radiance data (from the AVIRIS sensor [13]) as
the background scene. On this scene, we simulate a plume of
NO A [14] (see Fig. 1).

Since this data is in the visible and near-infrared (VNIR),
the plume is necessarily in absorption. If the absorption as
a function of wavelength ' is given by () � '  (this is what is
plotted in Fig. 1), then the measured radiance in the ; th pixel
as a function of ' is given by Beer’s law:* & � '  <� + & � '  -,/.10*� 5 � & () � '  @ (32)2 + & � '  5 � � + � '  @� () � '  =9 (33)

where � + � '  @� � ���0�=�! " $&('*) + & � '  . The approximation is
accurate if � & () � '  43 � , and + & � '  5 � + � '  @� is relatively small
at wavelengths where () � '  is large. In the simulation, we used
Eq. (32) directly; the approximation in Eq. (33) was used to
obtain the signature vector � used for the matched filters. In
particular, we take

)/5 � '  � � + � '  /� () � '  for each wavelength,
and then normalize to obtain � � � 5 � > � 5 > . Fig. 2 shows the
spectra from a dozen randomly chosen pixels in this image,
and for comparison, the spectrum � � .
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Fig. 3. (a) Broadband image of the hyperspectral dataset, including the
simulated (and virtually invisible) plume. (b) Simple matched filter (sMF)
image using the plume signature ����& . (c) Uncontaminated matched filter
(uMF), ���������	��


�
� & , is based on the covariance of the underlying

(plume-free) scene. (d) Contaminated matched filter (cMF), ���� 

� & , is

based on the covariance of the scene with the plume included. (e) Profile of the
plume strength (along the line indicated by the stripe across the small image
to the left of the plot). The horizontal scale corresponds to position, in pixels,
across the image; the vertical scale is based on matched filter values which
have been normalized across the whole image to have zero mean and variance
equal to unity. Shown are profiles for the simple (sMF), the uncontaminated
(uMF), and the contaminated (cMF) matched filters. Also shown is the actual
plume profile, scaled so that 1 corresponds to %�������� � ppm-m.

Fig. 3 shows the results of the matched filters applied to
the simulated plume imposed on a 128 � 128 chip from the� ������� channel AVIRIS image. In fact, there are two plumes;
a large plume with a gaussian profile in the center of the image,
and a smaller and weaker plume in the upper left corner. The
correlation between the spatial structure of the image with
the spatial structure of the plume concentration leads, in this
case, to >

	� > ��� � ��� . Fig. 3(a) shows a broadband image (sum
of all channels) of the data with plume, and in this image, the
plume is virtually invisible. The simple matched filter � �G� in
Fig. 3(b) enhances the plume signature but does not suppress
the background. The optimal matched filter � � , E )- � in
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Fig. 4. (a) Broadband image of the shuffled scene; these are the same
pixels as in Fig. 3, but with a randomized spatial layout. (b) Simple matched
filter (sMF). (c) Uncontaminated matched filter (uMF). (d) Contaminated
matched filter (cMF); unlike Fig. 3(d), the plume has very little effect on
the detectability of the plume. (e) Profile of the matched filter values; unlike
Fig. 3(e), the profiles for the uncontaminated (uMF) and contaminated (cMF)
matched filters are nearly the same.

Fig. 3(c) suppresses the background considerably, and in that
image even the weaker plume is evident in the image. But
when the matched filter is based on a covariance computed
from data that is contaminated by the plume, as seen in
Fig. 3(d), that matched filter is not as effective at suppressing
the background; remnants of that background are evident in
the image, and the weaker plume is hidden in that background
variation.

Fig. 3(e) shows a profile across the top of the scene that cuts
through the center of the weaker plume. This plot recapitulates
the results shown in the images in Fig. 3. One can see the dip
in the curve (centroid at horizontal position of 21 pixels) due
to the weak plume, but only for the uncontaminated matched
filter (uMF) is the dip larger than the fluctuations in the
matched filter value due to the background clutter. The dip
is also seen in the contaminated matched filter (cMF) profile,
but its magnitude is on the same order as the fluctuations due
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to the background. For the simple matched filter (sMF), the
profile is completely dominated by the background clutter.

As a control experiment, we shuffle the pixels in the image.
This way, the mean and covariance of the hyperspectral image
cube is strictly preserved, but the plume-scene correlation is
much smaller. For this image, we have >

	� > � � �(��� . Fig. 4
shows the shuffled image, and the application of the various
matched filters to that data. In Fig. 4(d), in contrast to Fig. 3(d),
the effect of including the plume in the covariance estimation
is much smaller. The plume strength and the spectral statistics
of the background clutter (mean and covariance) are the same
in both cases. The difference is that the correlation is much
smaller for the shuffled image.
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Fig. 5. Average SCR is plotted against relative plume strength for three
different matched filters: simple (sMF), uncontaminated (uCF), and contam-
inated (cMF). The contaminated matched filter result is plotted for both the
original (Fig. 3) and the shuffled (Fig. 4) image. The relative plume strength is
the signal

� % & � � % divided by the root mean square of the plume-free image��� "�� � "�� � � � �	� � � trace 
 � ��� �	� � . The vertical line corresponds to the plume
strength in Figs. 2-4. The SCR is computed from the matched filter images by
first distinguishing the on-plume from off-plume pixels. We define  on as the
average value of ����� over the on-plume pixels, and  off is the average over
the off-plume pixels. With � off is the variance of the matched filter values
over the off-plume pixels, then we compute SCR ��
� on �� off

� ��� � off.

In Fig. 5, we plot the average SCR for matched filter plume
detection as a function of relative plume strength. We see
that SCR increases with increasing plume strength, but the
contaminated matched filters saturate2 at a maximum value.
That maximum value is larger for the shuffled image, where
the correlation (in particular, the value of >

	� > ) is smaller.

VI. CONCLUSION

The band-to-band covariance matrix
,

is altered when the
background is linearly contaminated by signal, but the effect of
this contamination on the matched filter � � , E ) � depends
on the correlation between the variation in plume strength
over the scene with the variation in the ground spectrum
over the scene. The dimensionless vector

	� characterizes this
correlation. When >

	� > � � �/�  , the performance of the matched
filter is substantially compromised. We have not investigated
typical values of >

	� > in practical plume-detection scenarios,
but we emphasize that >

	� > depends on the plume geometry
and profile, not on overall plume strength. Along these lines,

2In this simulation, as the plume strength is further increased, we begin to
see a decrease in the SCR, due to nonlinearity of the Beer’s Law absorption.

we also remark that Eq. (31) indicates that
	� will be relatively

small as long as the plume is relatively small compared to the
size of the scene. In our example, the plume is relatively large,
and >

	� > � � � � � . In that scene, with a relative plume strength
of four percent, the SCR for the contaminated matched filter
was reduced by a factor of 12 compared to the uncontaminated
matched filter. A second example, based on shuffling the pixels
in the first example, had reduced correlation ( >

	� > ��� �3��� ) but
in other respects was identical to the first example, and in that
case the SCR loss was only about 30%.
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